本篇文章杰成学习网给大家谈谈arcsinx求导,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
1、arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。
2、arcsinx的导数1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求导:cosy × y=1。
3、arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。推导过程:y=arcsinx,y=1/√(1-x),反函数的导数:y=arcsinx,那么,siny=x,求导得到cosy*y=1。
4、arcsinx的导数1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。
arcsinx的导数1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。
arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。
arcsinx的导数1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求导:cosy × y=1。
arcsinx的导数为1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求导:cosy × y=1。即:y=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)。
反三角函数导数:(arcsinx)=1/√(1-x);(arccosx)=-1/√(1-x);(arctanx)=1/(1+x);(arccotx)=-1/(1+x)。
arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。
arcsinx的导数1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。
arcsinx的导数1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求导:cosy × y=1。即:y=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)。
arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x); arccosx的导数:-1/√(1-x) 扩展资料 arccosx的导数解答过程如下:(1)y=arccosx则cosy=x。
arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。推导过程:y=arcsinx,y=1/√(1-x),反函数的导数:y=arcsinx,那么,siny=x,求导得到cosy*y=1。
arcsinx的导数是:y=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。
arcsinx的导数1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。
arcsinx的导数1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求zhuan导:cosy × y=1。
arcsinx的导数1/√(1-x^2)。解答过程如下:此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。两边进行求导:cosy × y=1。即:y=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)。
关于arcsinx求导和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注杰成学习网。